
ShmStreaming: A Shared Memory Approach for
Improving Hadoop Streaming Performance

Longbin Lai∗, Jingyu Zhou†, Long Zheng‡§, Huakang Li§, Yanchao Lu§, Feilong Tang†, Minyi Guo§
∗School of Information Security, Shanghai Jiao Tong University, Shanghai, 200240, China

†School of Software, Shanghai Jiao Tong University, Shanghai, 200240, China
‡School of Computer Science and Engineering, The University of Aizu, Aizu-wakamatsu, 965-8580, Japan

§Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

Abstract—The Map-Reduce programming model is now
drawing both academic and industrial attentions for processing
large data. Hadoop, one of the most popular implementa-
tions of the model, has been widely adopted. To support
application programs written in languages other than Java,
Hadoop introduces a streaming mechanism that allows it to
communicate with external programs through pipes. Because of
the added overhead associated with pipes and context switches,
the performance of Hadoop streaming is significantly worse
than native Hadoop jobs.

We propose ShmStreaming, a mechanism that takes advan-
tages of shared memory to realize Hadoop streaming for better
performance. Specifically, ShmStreaming uses shared memory
to implement a lockless FIFO queue that connects Hadoop and
external programs. To further reduce the number of context
switches, the FIFO queue adopts a batching technique to
allow multiple key-value pairs to be processed together. For
typical benchmarks of word count, grep and inverted index,
experimental results show 20−30% performance improvement
comparing to the native Hadoop streaming implementation.

Keywords-Hadoop Streaming; Map-Reduce; Shared Mem-
ory;

I. INTRODUCTION

In the era of big data [2], [9], Map-Reduce [4] has been
widely used as the distributed programming model for data-
intensive applications. Hadoop is one of the most mature
and popular open-source Map-Reduce platform for data-
intensive applications. To support legacy programs written in
other languages, Hadoop provides a streaming mechanism,
which allows mappers and reducers to be external programs.
Because the data exchange of Hadoop streaming uses pipes,
the performance of Hadoop streaming is significantly re-
duced [5].

Hadoop C++ Extension (HCE) [17] addressed the bottle-
neck of Hadoop Streaming by moving all map and reduce
tasks to external C++ implementations. In HCE, Hadoop
initiates the map-reduce tasks and then notifies C++ routines
to actually launch map-reduce jobs written in C++ via
sockets. Compared to Hadoop streaming, which only accom-
plishes the mapping and reducing portions, HCE is actually
a reimplementation of Hadoop’s Map-Reduce framework in
C++. HCE only supports jobs written in C and C++ and
introduces a large number of modifications to Hadoop.

In this paper, we design and implement ShmStream-
ing, a prototype utility, to improve the performance of
Hadoop streaming with minimum changes to both Hadoop
and streaming programs. We first analyze the performance
overhead of the pipe mechanism used by Hadoop streaming
to exchange <key, value> pairs between Hadoop and
external processes, and find out it is the pipe that decreases
overall performances. Furthermore, our micro benchmark
results show that the system call overhead, locking, and ad-
dress space checking are the main bottlenecks for pipes. To
reduce the overhead associated with system calls, we adopt
shared memory to transfer data pairs between Hadoop and
external processes. An efficient queue is designed to guar-
antee exclusive access to the shared memory, and deal with
synchronization issues within the involving processes. We
have implemented extra interfaces in the Hadoop Streaming
package in order to provide capabilities for Hadoop’s Java
routines to access the shared memory created by standard
Linux IPC functions. The current ShmStreaming is imple-
mented for C and C++. Our experimental results on three
typical benchmarks show that the proposed ShmStreaming
perform 20-30% better than the native Hadoop streaming.

Currently, we have not extended the implementation to
languages other than C and C++. However, we note that
shared memory operations are also supported by many other
languages. For instance, Python [12], and Perl [16] both
have official binding or customized SYSV IPC support.
As a result, we see no technical difficulty in applying our
approach to other languages. Furthermore, this approach can
also be adopted to other settings besides Hadoop where
there are interactions between Java and other languages. One
latent drawback may be that our implementations can only
be adopted when user has full access to the source code of
the external program in order to change it and to use the
shared memory.

This paper is organized as follows. Section II discusses the
background of Hadoop streaming. Motivations are illustrated
in Section III, in which we further explore the bottleneck
of pipes. Section IV covers the overall design and the
implementation of ShmStreaming. Section V evaluates the
performance of ShmStreaming with typical applications.

2013 IEEE 27th International Conference on Advanced Information Networking and Applications

1550-445X/13 $26.00 © 2013 IEEE

DOI 10.1109/AINA.2013.90

137

Section VI discusses related work. Finally, Section VII
concludes with paper.

II. BACKGROUND

Hadoop Streaming is a set of extra utilities provided
by Hadoop for developing applications in languages other
than Java, such as C, C++, Python, Perl, and UNIX shells,
which makes it easy to adapt legacy applications into a
MapReduce-style execution model. Additionally, Hadoop
Streaming provides alternatives for programmers who are
not quite familiar with Java to develop Hadoop applications.
Specifically, a streaming job launches external programs
and communicates with external processes via two pipes,
clientIn_ and clientOut_, to accept data from exter-
nal processes, and to send data outside, respectively.

������������������������	
�������������
�����
���������
����������������

	
���������

������������������
���
���
��� ���!�""�
������
���
���
��� �����!

��
��

��
�

��
�

#
��

���
�

��
�$

���
��

!

%
��

 �
��

$�
��

��
�!

&�
��

�'
'�

��
��

''
�(�

�
''

��
��

��
�'

'�
��

��

��������

�������� ������

�������������� ���

��������
�
���)��*���� !

��������
����)�� !

��������
����*���� !

��
��

��
!�

�

"�����!�������

Figure 1. The mapper part of Hadoop Streaming.

Figure 1 illustrates the mapper part of Hadoop streaming.
PipeMapper of the Hadoop streaming interface calls a
map function to fetch original data records and transform
them into <key, value> pairs, which are sent out to an
external mapper via clientOut_. The external mapper
simply fetches the pairs from standard input, processes
the pairs sequentially, and emits output <key, value>
pairs to clientIn_. The reduce part of Hadoop streaming
works in a similar way.

Though flexible, Hadoop Streaming is often criticized
for its poor performance. Ding et al. [5] have attributed
the performance bottleneck to the pipe mechanism. They
observed that the streaming performance becomes worse
with increasing size of input data. While for computation-
intensive tasks that don’t have much data exchange between
Hadoop and external processes, streaming performance was
not so unacceptable, and even a bit better than the native
Hadoop. However, they do not give a detailed treatment of
why pipes can reduce the performance so remarkably. As
one of our motivations in designing ShmStreaming, we will
discuss this issue in the next section.

III. MOTIVATION

Hadoop mainly targets data-intensive work. In a single
streaming job, the number of read and write system
calls to pipes is proportional to the number of <key,
value> pairs, i.e., total data size divided by the average
size of <key, value> pairs. Because the input data size
is usually in the order of GB and TB (or even up to PB),
and the average size of <key, value> pairs in typical
applications is less than a few hundreds of bytes, the total
number of <key, value> pairs becomes extremely large.
As a result, Hadoop Streaming jobs issue a large number of
read and write calls, which dramatically drag down the
performance.

To measure the overhead of read and write system
calls, we designed a micro-benchmark that works in a tight
loop of writing 4 KB of data to a character device and then
reading 4 KB data back. The device driver in the kernel
simulates a UNIX pipe by maintaining an internal 4 KB
buffer. The execution time is divided into three parts: system
call overhead, memory copy, and the rest of the execution
time. Let the execution time of read or write system call
be tu and the execution time of the corresponding handler of
the device driver be tk. The system call overhead is tu− tk,
which includes the time for setting up system call param-
eters, switching from user mode to kernel mode, finding
and calling the corresponding handler function, switching
back to user mode, and returning results. tk is composed of
memory copy and some bookkeeping code. To be accurate,
we use CPU ticks obtained via rdtsc() to determine the
executing times.

The average results of 50,000 operations are shown in
Figure 2. We found that the actual work of memory copy
only accounts for about 10% of time, and the overhead of
system calls takes up nearly half of all the execution time.
Locking the kernel buffer, checking the validity of user space
memory, and unlocking are responsible for 42% of the time.
Results for write exhibit a similar pattern.

��������	

�
�����	�

���

������
����
���

�������
���

Figure 2. The breakdown of read system call time. Experiments are
performed on a machine with Intel Core i5 2.3 GHz CPU, 4 GB memory.

To summarize, the read and write system calls have an
overhead that is many times the cost of the real useful work,

138

i.e., memory copy. For applications using Hadoop Stream-
ing, this overhead aggregated over a large number of system
calls can have significantly adverse impact on performance.
To address this problem, we designed and implemented
a shared-memory approach for Hadoop Streaming, thus
avoiding the overhead associated with system calls.

IV. DESIGN AND IMPLEMENTATION

A. Design Requirement

We have identified the following requirements for our
ShmStreaming approach.

• The changes to Hadoop source code should be minimal.
This is to avoid introducing bugs into Hadoop and to
make it easy for porting ShmStreaming to new releases
of Hadoop.

• The modifications of external programs should also be
minimal so that ShmStreaming can be easily adopted.

• ShmStreaming should be able to support different pro-
gramming languages, such as C, C++, Python, Perl, and
the UNIX shell.

B. ShmStreaming Interface

We have designed the interface for both Hadoop and
external programs to use our ShmStreaming mechanism.

For Hadoop, programmers only need to change
the job configuration file to specify using shared
memory for streaming, i.e., set stream.map(red-
uce).input=shm, and stream.map(reduce).out-
put=shm.

For external programs, instead of interacting with stdin
and stdout, the programs need to instantiate a SMStream
object and perform read and write operations with the object.
Figure 3 illustrates the interface of class SMStream.

c l a s s SMStream {
pub l i c :

/ / I n i t i a l i z e shared memory w i t h b u f f e r s i z e
SMStream (i n t b u f S i z e = 4 0 9 6) ;

˜ SMStream () ;

/ / w r i t e a b u f f e r t o shared memory
i n t w r i t e (char ∗buf , i n t s i z e) ;

/ / read da ta from shared memory i n t o a b u f f e r
i n t r e a d (char ∗buf , i n t s i z e) ;

} ;

Figure 3. SMStream interface.

C. Synchronization between Reader and Writer

Like many shared-memory applications, ShmStreaming
needs to synchronize data accesses to shared-memory re-
gions between Hadoop and external processes. Typically,
critical areas like shared memory are guarded by locks, e.g.,
using semaphores. However, semaphore operations involve
system calls and context switches. Because each access to

shared memory needs to be protected with a lock and an
unlock operations, there are twice as many system calls for
semaphore operations as the number of accesses. Recall that
each access only reads or writes one <key, value> pair.
The performance overhead due to system calls is even larger
than the pipe implementation.

By taking a closer look at streaming jobs, we find
that each streaming communication follows a single-reader-
single-write (SRSW) model, in which either Hadoop acts as
a writer and outputs data to an external process, or vice
versa. The FIFO queue [15], [3] is a natural fit for the
SRSW model, as only two integer variables are needed to
separately record the positions of the writer and the reader.
Once the writer has pushed n bytes of data into the FIFO,
one pointer moves forward by n. Similarly, the other pointer
moves when the reader finishes a read operation. No locking
is required here.

Algorithm 1 read and write using busy wait
1: function READ(buf, n)
2: while n > 0 do
3: read← readFIFO(buf, n)
4: n← n− read;
5: end while
6: end function
7:
8: function WRITE(buf, n)
9: while n > 0 do

10: written← writeFIFO(buf, n)
11: n← n− written;
12: end while
13: end function

Although FIFO emancipates us from locks, synchroniza-
tion is still required to notify the reader and the writer about
the conditions of the buffer. The reader cannot receive any
valid data until the buffer is not empty. Meanwhile, the writer
will be blocked once the buffer is full. Algorithm 1 illustrates
strawman implementations of read and write using busy
wait. readFIFO and writeFIFO functions attempt to
read or write certain bytes of data from or to the FIFO, and
return the actual bytes completed. If the buffer is empty,
the readFIFO returns zeros and the read operation will be
retried immediately in a busy loop. The write operation is
also in a busy loop when the buffer is full. Busy wait can be
relatively efficient when reader and writer synchronize with
each other well so that both empty and full buffer rarely
happen. However, in Hadoop Streaming, external programs
are usually much slower to process <key, value> pairs
than Hadoop. As a result, the Hadoop mapper spends much
time busy-waiting on writes, and the reducer frequently waits
on reads, significantly reducing the performance.

To avoid busy waiting, we need a mechanism for blocking
and later resuming execution. Whenever there is nothing to
read, the reader is blocked until the writer has pushed some
data into the FIFO. Conversely, the writer is blocked when

139

the FIFO is full and resumes execution when the reader
has consumed some data from the FIFO. A semaphore can
be used here to synchronize readers and writers. However,
because external mappers are usually slower than Hadoop,
the FIFO buffer will frequently be in the full state, and the
writer will issue many semaphore wait calls to block itself,
which incurs high overhead. The reducing phase follows the
same pattern, blocking the reader due to an empty buffer.

Algorithm 2 Read and write using semaphores to synchro-
nize and batching to reduce overhead.

1: // Global variables
2: int batch size = CONSTANT
3: semaphore sem full(0), sem empty(0)
4: // flag of FIFO’s status
5: bool empty = 1, full = 0
6: // # of FIFO’s is full/empty
7: int times full = 0, times empty = 0
8: // functions testing whether the FIFO is empty or full
9: is empty(), is full()

10:
11: function READ WAIT(buf, n)
12: if not compare and swap(empty, 0, is empty()) then
13: if compare and swap(full, 1, 0) then
14: times full← 0
15: sem post(sem full) // wake up writer
16: end if
17: sem wait(sem empty) // wait for writer
18: end if
19: READ(buf, n)
20: if full then
21: times full← times full + 1
22: if times full > batch size then
23: times full← 0
24: sem post(sem full)
25: end if
26: end if
27: end function
28:
29: function WRITE WAIT(buf, n)
30: if not compare and swap(full, 0, is full()) then
31: if compare and swap(empty, 1, 0) then
32: times empty ← 0
33: sem post(sem empty) // wake up reader
34: end if
35: sem wait(sem full) // wait for reader
36: end if
37: WRITE(buf, n)
38: if empty then
39: times empty ← times empty + 1
40: if times empty > batch size then
41: times empty ← 0
42: sem post(sem empty)
43: end if
44: end if
45: end function

Algorithm 2 presents an improved version of read and
write functions using semaphores to synchronize readers
and writers. More importantly, this algorithm batches reads
and writes to reduce the number of semaphore calls.

The batching size is controlled by variable batch size

that can be configured by users. In practice, we recommend
setting batch size to be slightly less than buffer size

record size
,

where record size is the estimated size of <key,
value> pairs. This is to prevent the size of a batch from
exceeding the total buffer size. Our evaluation in Section V-C
shows that such a setting for batch size yields the best
performance.

Flags empty and full represent the empty and full
status of the shared FIFO buffer, and times empty and
times full serve as counters for the times that the
writer/reader executes when the buffer is empty or full.
These parameters are stored in shared memory to be ac-
cessed by both the reader and writer.

When the FIFO is empty, the is empty() at line 12
returns one, the compare and swap function assigns one
to empty and enters the if block from line 13 to 17, causing
the reader to be blocked at line 17. The reader will not
be woken up by the writer until times empty exceeds
the threshold of batch size (line 38 to 44). Once woken
up, the reader will have a number of <key, value>
pairs to consume and can avoid immediately blocking after
processing one pair. The blocking and waking up of the
writer work in a similar fashion. In this way, the number of
system calls can be greatly reduced. Note that we use the
compare and swap atomic function at line 12, 13, 30 and
31 to protect the modification of the FIFO-status parameters.
Otherwise, there will be risks of deadlock.

Take line 12 as an example: the execution will be sep-
arated into two steps, first to judge whether the FIFO is
empty, and then to assign values to the empty variable.
Suppose initially FIFO is empty and empty has not been
set to one yet. Just before setting the empty variable to one,
the operating system switches the process from the reader
to the writer, leaving the empty variable unset. Then the
writer checks the empty variable, and since the variable
has not been set, the writer completes the operation. The
writer continues writing until blocking itself due to a full
FIFO. Finally, when the reader resumes execution to set
the empty variable and then conducts the P operation at
line 17, both the reader and the writer become blocked,
i.e., a deadlock condition. By using the compare and swap

atomic functions, we can avoid such deadlock scenarios.

D. Implementation

We have implemented the Hadoop Streaming interface
with shared memory operations discussed above.
Specifically, we have added three new classes to Hadoop
and made changes to PipeMapRed, PipeMapper,
and PipeReducer. We are careful to make the
changes small — a few dozen lines. The new classes
include ShmInputWriter and ShmOutputReader,
implementing interfaces of InputWriter and

140

OutputReader, respectively. As a result, programmers
can use our approach by only changing a configuration file.

Because Java does not directly support shared memory
operations, we use Java Native Interfaces (JNI) to invoke
shared memory operations and copy memory from shared
memory to Java, and vice versa. With native library in the
HADOOP_HOME directory, Hadoop automatically loads the
library during startup.

For external programs, we implement a new class
SMStream that provides a read and a write interface,
similar to the system call interface. Typically, applications
only need to change a few lines of code to take advantages
of ShmStreaming.

V. EVALUATION

A. Experiment Setup

All experiments are conducted in a cluster of eight nodes.
Among them, one node is configured as namenode and the
others are datanodes. Table I describes the detailed hardware
and software configurations.

Table I
HARDWARE AND SOFTWARE CONFIGURATIONS FOR THE EXPERIMENT

CLUSTER.

Item Configurations
CPU Intel Xeon E5405, quad-core, 2 GHz

Memory 8 GB
OS CentOS5.5 64bit, Linux 2.6.18

GCC / G++ 4.1.2 (Rat Hat)
Java OpenJDK (build 1.6.0-b09)

Benchmarks used in the experiments are: (I) word count:
counting words in input files; (II) grep: finding match
for specified pattern from input files; (III) inverted index:
generating inverted index for a bundle of small files. These
three benchmarks are typical Map-Reduce applications that
generate a large number of <key, value> pairs. The
input files for all the tests except the batch size study
section are generated by randomly selecting words from
the 10,000 most frequently used English words [18] and
composing them into a large file with approximately 10 to
20 words a line. word count and grep have the same input
files with sizes of 4, 6, 8, 10, and 20 GB. Input files for the
inverted index are a number of text files, and each file has a
size of 64 MB, equal to the size of an HDFS (Hadoop File
System) block.

During the experiments, batch size is set to 64 and
buffer size of the shared memory is set to 8192 for
mapper and 16384 for reducer if not specially mentioned.
We control record size to guarantee high performance of
ShmStreaming during the experiment. Experimental results
are the average of 10 runs.

B. Overall Results

This experiments compare the performance of Hadoop,
Hadoop Streaming, and ShmStreaming (with the optimal

configurations) on three benchmarks. The results are shown
in Figure 4. The native Hadoop presents the best per-
formance in all benchmarks, followed by ShmStreaming.
Hadoop Streaming performs the worst, with more than 100%
overhead for word count and grep, and over 50% overhead
for inverted index. ShmStreaming and Hadoop Streaming
are slower than native Hadoop due to the extra overhead
of the memory copy between Hadoop and external process.
ShmStreaming outperforms Hadoop Streaming due to a
reduction of context switches as well as an optimization of
synchronizations.

The performance of ShmStreaming lies between native
Hadoop and Hadoop Streaming. Compared to Hadoop
Streaming, ShmStreaming improves performance by nearly
24% for word count, 24% for grep, and 22% for inverted
index. This is mainly because ShmStreaming uses shared
memory to avoid the extra cost of system calls.

Figure 5 illustrates the extra overhead of Hadoop Stream-
ing and ShmStreaming relative to native Hadoop with dif-
ferent input sizes. The extra overhead is approximately pro-
portional to the size of the input. As a result, ShmStreaming
achieves a higher performance improvement in absolute
values as the input size increases.

C. Study on batch size

This experiment studies the impact of batch size on the
performance of ShmStreaming. When batch size is one,
ShmStreaming is similar to kernel pipes, which lock the
buffer for each read or write call. When batch size is larger,
ShmStreaming allows reader or writer to perform several
operations without being blocked.

In this experiment, we focus on the mapper stage for word
count. The buffer size is set to 8192 and the test files
(4GB each) are specifically generated with a fixed line size
of 256 bytes. We start with an experiment using test files
with fixed word size as 2, 4, 8, 16, 32, 64, respectively.

Figure 6(a) illustrates the performance improvement of
ShmStreaming over Hadoop Streaming when changing
batch size with different record size. We can observe that
when batch size is 1 and 2, there is almost no improvement,
because the overhead of JNI dominates the performance
savings of shared memory. We can also observe the fol-
lowing pattern from Figure 6(a): the performance starts
to drop significantly when batch size is buffer size

record size
. For

example, when the record size is 2, the performance starts
to drop when batch size is 4096, and when the record size

changes to 64, the performance decreases when batch size

is larger than 128. This is because when batch size is larger,
the other end of the shared memory buffer is forced to wait
for some time, even though it may access the buffer. As a
result, the overlapping period of reads and writes is greatly
decreased, resulting in lower performance. The performance
starts to drop earlier than buffer size

record size
is due to the fact that

record size is actually a little bit larger than word size,

141

4 6 8 10 20
0

200

400

600

800

1000

1200

1400

1600

Size(GB)

T
im

e
(s

)

Hadoop
Hadoop Streaming
ShmStreaming

(a) word count

4 6 8 10 20
0

100

200

300

400

500

600

700

Size(GB)

T
im

e
(s

)

Hadoop
Hadoop Streaming
ShmStreaming

(b) grep

20 40 60 80 100
0

200

400

600

800

1000

1200

Num Files

T
im

e
(s

)

Hadoop
Hadoop Streaming
ShmStreaming

(c) inverted index

Figure 4. Results of executing time for native Hadoop, Hadoop Streaming, and ShmStreaming on three benchmarks.

4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

Size(GB)

T
im

e
(s

)

Hadoop Streaming

ShmStreaming

(a) word count

4 6 8 10 12 14 16 18 20
50

100

150

200

250

300

350

Size(GB)

T
im

e
(s

)

Hadoop Streaming

ShmStreaming

(b) grep

20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

Num Files

T
im

e
(s

)

Hadoop Streaming

ShmStreaming

(c) inverted index

Figure 5. Extra overhead (lag) comparing to native Hadoop for Hadoop Streaming and ShmStreaming.

because each <key, value> pair contains an integer as
the value.

We performed similar experiments on grep and inverted
index with the same observations as word count. Figure 6(b)
shows similar pattern for all the three benchmarks when the
record size is set as 16.

Table II
PERFORMANCE IMPROVEMENT WITH FIXED AND VARIED record size.

batch size 2 64 128 256 512

record size(fixed 16) 9.87 18.06 17.71 17.99 6.41
record size(varied 16.32) 9.49 19.14 18.12 18.95 18.41
record size(fixed 32) 6.17 18.48 18.77 8.67 6.26

record size(varied 32.32) 7.99 18.36 18.49 18.79 6.00

record size(fixed 64) 7.92 18.68 8.71 6.21 6.05
record size(varied 63.98) 5.43 18.9 18.7 10.24 8.21

Because the record size cannot be a fixed value in prac-
tice, we conduct another experiment to study the impact of
varied record size. The test files contain either fixed-size or
varied-size words, whose average size is approximately 16,
32 and 64. Table II illustrates the experimental results, the
data represents the percentage of performance improvement,
and the bold items represent the batch size after which
the performance drops. We can observe that the average
record size still dominates the optimal configurations of
batch size in all cases. For the varied-size cases, the

performance always starts to drop at a larger size than that
of the fixed-size cases. This experiment demonstrates that
our approach can improve the performance for cases when
word size varies.

D. Impact of buffer size

This experiment evaluates the impact of buffer size,
which is one of the most significant configurations in
this work. The test file is the same as the general test,
and batch size always guarantees optimal performance. As
shown in Table III, the performance of all three benchmarks
is not sensitive to the variation of buffer size. Note that
buffer size exceeding 16,384 is not supported in current
prototype implementation of ShmStreaming, because the JNI
interface we adopted fails to allocate a shared memory with
size larger than 16,384. We expect our approach to work
well with larger sizes of shared memory.

Table III
THE IMPACT OF buffer size.

buffer size 4096 8192 12288 16384 ≥20480

word count 18.40 18.24 18.39 18.83 N/A
grep 22.28 22.40 22.61 22.15 N/A

inverted index 18.30 18.72 18.51 18.17 N/A

142

��� � � � � �	
� 	� ��� ��	 ��� ���� ���� ���	
��

�

�

��

��

��

��
��
��

��
��
���

��
��
��

��
���
�
�

����� !"#�

������$!"#��%��
������$!"#��%��
������$!"#��%��
������$!"#��%��	
������$!"#��%�
�
������$!"#��%�	�

(a) batch size and record size for word count.

��� � � � � �	
� 	� ��� ��	 ��� ���� ���� ���	
�

�

��

��

��

��

��
��
��

��
��
���

��
��
��

��
���
�
�

����� !"#�

�&��$���'��
�(���
�"������$�"�$�)

(b) batch size and record size for three benchmarks

Figure 6. The performance improvement of ShmStreaming on configu-
ration of batch size varied from 1 to 4096 and buffer size is set to
8192.

Table IV
THE PERFORMANCE COMPARISON OF DIFFERENT CONFIGURATIONS FOR

SHMSTREAMING WITH word count USING A FILE OF 4 GB SIZE.

Config. Performance Improvement(%)
busy wait 5.96

batch size = 1 5.14
batch size = 64 (best) 22.5

E. Comparison with Busy Wait

This experiment compares the performance of Shm-
Streaming using busy wait and batching. Table IV illustrates
the performance improvement over Hadoop Streaming. We
can observe that the performance of busy wait is similar to
the configuration where batch size is one (note which is the
situation of simple lock with batching), slightly more than
5% improvement, and both perform far from the optimal

of 22.5%. For busy wait, the lower performance is because
readers and writers are not synchronized. In addition, the
busy waiting causes high CPU utilization, which is harmful
for other jobs running on the same node. For small batch
size, it is because of the JNI overhead. The default Shm-
Streaming chooses the right value for batch size, batching
read and write operations as well as reducing the number of
system calls.

VI. RELATED WORK

The drawbacks of Hadoop Streaming have been addressed
by Baidu Inc. with an implementation of HCE [17], which
implements much of Hadoop’s functionality in C++, such
as reading input stream, mapping <key, value> pairs,
shuffling, sorting, and reducing final <key, value> pairs.
Performance results indicate that HCE achieves significant
improvement comparing to Hadoop streaming. Our work is
different from HCE in three aspects. First, HCE avoids data
copies with C++ implementations of input stream readers
and mappers (or reducers), while our approach uses shared
memory for data exchange between Hadoop and external
programs. Second, HCE makes a large number of changes
to Hadoop, while our modifications are very limited. Finally,
HCE only supports C++, while ShmStreaming can be used
by programs written in other languages.

Historically, critical system calls like read and write
have been considered as vital factors that would potentially
make differences to the performance of overall systems.
Zodok et al. [19] witness an overall performance lag of
data copying to user-level processes by almost two orders
of magnitude for data-intensive operations. The performance
issues on system calls have been witnessed in many studies.
Soares and Stumm [13] point out the application needs to
wait for the completion of system calls due to a synchronous
execution model enforced in most common operating sys-
tems, which results in performance inefficiencies. Zhao [20]
anatomizes the call stack of read system call in the EXT2
file system and finds that the call goes through over seven
logic levels in order to finally access the data. During the
process, at least two context switches happen between user
and kernel space. For Hadoop streaming, we find that system
calls and context switches introduce a large overhead for
data-intensive applications.

Researchers have studied methods of implementing con-
current data structures without the use of mutual exclu-
sion [15], [1], [8]. Recently, lock-free or even wait-free
techniques have been introduced into multicore or parallel
environments [10], [7], [11], [14], [6]. Many of the lock-free
algorithms are complicated in consideration of the asynchro-
nized context and non-linear structures. Our approach uses
a lock-free FIFO queue, with the difference of employing a
batching mechanism for performance improvement.

143

VII. CONCLUSIONS

The pipe mechanism used by Hadoop Streaming incurs
high performance overhead while dealing with data-intensive
jobs. We discover that system calls, i.e., read and write
calls, account for most of the overhead of Hadoop Stream-
ing. To address this problem, we introduce ShmStreaming
that employs shared memory for data exchange between
Hadoop and external programs. With the minimum modifi-
cations to Hadoop and the streaming applications (when the
source code is available), ShmStreaming achieves a 20−30%
performance improvement over the native Hadoop Streaming
for benchmarks of word count, grep, and inverted index.

Our prototype implementation can be further improved.
We notice that except system calls, the overhead of memory
copy is also a major part during the interprocess communi-
cation. Thus, we may improve performance by reducing the
number of memory copies. Finally, it would be interesting to
study the relationship between batch size and record size.

ACKNOWLEDGMENT

We thank anonymous referees for their helpful comments.
This work was supported in part by National Natural Sci-
ence Foundation of China (NSFC) (Grant No. 61003012,
61261160502) and 863 programs of China (Grant No.
2011AA01A202). This work was as well supported by Japan
Society for the Promotion of Science (JSPS). This work was
also supported by the NSFC with Grant Nos. 61272442 and
61073148, and Key Basic Research Project of the Science
and Technology Commission of Shanghai Municipality with
Grant No. 12JC1405400.

REFERENCES

[1] G. Barnes. A method for implementing lock-free shared-
data structures. In Proceedings of the fifth annual ACM
symposium on Parallel algorithms and architectures, pages
261–270. ACM, 1993.

[2] G. Bell, J. Gray, and A. Szalay. Petascale computational
systems. Computer, 39(1):110–112, 2006.

[3] D. Bovet and M. Cesati. Understanding the Linux kernel.
O’Reilly Media, 2006.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI’04: Sixth Symposium on
Operating System Design and Implementation, San Francisco,
CA, 2004.

[5] M. Ding, L. Zheng, Y. Lu, L. Li, S. Guo, and M. Guo.
More convenient more overhead: the performance evaluation
of hadoop streaming. In Proceedings of the 2011 ACM
Symposium on Research in Applied Computation, RACS ’11,
pages 307–313, New York, NY, USA, 2011. ACM.

[6] J. Giacomoni, T. Moseley, and M. Vachharajani. Fastfor-
ward for efficient pipeline parallelism: a cache-optimized
concurrent lock-free queue. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming, pages 43–52. ACM, 2008.

[7] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable
lock-free stack algorithm. In Proceedings of the sixteenth
annual ACM symposium on Parallelism in algorithms and
architectures, pages 206–215. ACM, 2004.

[8] M. Herlihy and J. Moss. Transactional memory: Architec-
tural support for lock-free data structures. ACM SIGARCH
computer architecture news, 21(2):289–300, 1993.

[9] P. Lyman and H. R. Varia. How much information. http:
//www.sims.berkeley.edu/how-much-info-2003, 2003.

[10] M. Michael and M. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory
multiprocessors. Journal of Parallel and Distributed Comput-
ing, 51(1):1–26, 1998.

[11] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using
elimination to implement scalable and lock-free fifo queues.
In Proceedings of the seventeenth annual ACM symposium on
Parallelism in algorithms and architectures, pages 253–262.
ACM, 2005.

[12] P. Semanchuk. System V IPC for Python - Semaphores,
Shared Memory and Message Queues. http://semanchuk.com/
philip/sysv ipc/, Oct 2010.

[13] L. Soares and M. Stumm. Flexsc: Flexible system call
scheduling with exception-less system calls. In Proceedings
of the 9th USENIX conference on Operating systems design
and implementation, pages 1–8. USENIX Association, 2010.

[14] H. Sundell and P. Tsigas. Fast and lock-free concurrent
priority queues for multi-thread systems. Journal of Parallel
and Distributed Computing, 65(5):609–627, 2005.

[15] J. Valois. Implementing lock-free queues. In Proceedings
of the Seventh International Conference on Parallel and
Distributed Computing Systems, pages 64–69, 1994.

[16] L. Wall, T. Christiansen, and J. Orwant. Programming perl.
O’Reilly Media, 2000.

[17] S. Wang. Hadoop c++ extention. https://issues.apache.org/
jira/browse/MAPREDUCE-1270, Dec 2009.

[18] WIKIPEDIA. Wiktionary:frequency lists. http://en.
wiktionary.org/wiki/Wiktionary:Frequency lists.

[19] E. Zadok, I. Badulescu, and A. Shender. Extending file
systems using stackable templates. In Proceedings of the
Annual USENIX Technical Conference, pages 57–70, 1999.

[20] J. Zhao. Analysis through read system call. http://www.ibm.
com/developerworks/cn/linux/l-cn-read/, March 2008.

144

